
Appendices
This online appendix contains two main sections. First, in Section A, I provide the proofs for the main

results in the paper. I begin by formally proving convexity of the value functions, and then proceed to
characterize Proposition 1. I also provide some details on the quantitative analysis of the baseline case in
Sections A.1, which discusses calibration, and in Section A.2, which details the näıve planning problem.

Then, in Section B, I present and discuss the alternative specification of preferences, discussed in Sections
3.3 and 6.4 in the main text. I detail which analytical results are possible, prove these results, and discuss
why this specification is more difficult analytically. I then provide the details of the quantitative analysis
of this model, along with the Hopenhayn and Nicolini version. Both of these alternative specifications are
discussed briefly in Section 6.4 in the main text.

A Proofs

This section presents proofs for the Lemmas and Propositions presented in the main text. First, for
reference, recall the planning problem from the main body of the paper. For a given choice of effort, a⃗i,
denote πj(a

k
i ) by πk,i

j , k = h, l. Then, the planner solves:

Gi
j(w) = min

τ i
j

µ
{
πh,i
j

[
C(vhj (e))− y

]
+ [1− πh,i

j ]C(vhj (u)) + β
[
πh,i
j Ge(w

h
j (e)) + [1− πh,i

j ]Gu(w
h
j (u))

]}
+(1− µ)

{
πl,i
j

[
C(vlj(e))− y

]
+ [1− πl,i

j ]C(vlj(u)) + β
[
πl,i
j Ge(w

l
j(e)) + [1− πl,i

j ]Gu(w
l
j(u))

]}
(26)

s.t. w = µVj(θh, θh, a
h
i ) + (1− µ)Vj(θl, θl, a

l
i) (27)

Vj(θh, θh, a
h
i ) ≥ Vj(θh, θl, ã), ∀ã ∈ Ai

l (28)

Vj(θh, θh, a
h
i ) ≥ Vj(θh, θh, ã), ∀ã ∈ Ai

h (29)

Vj(θl, θl, a
l
i) ≥ Vj(θl, θh, ã), ∀ã ∈ Ai

h (30)

Vj(θl, θl, a
l
i) ≥ Vj(θl, θl, ã), ∀ã ∈ Ai

l (31)

First I describe the general planning problem with lotteries over the effort choices. Let q⃗ = {qi}3i=1 denote
the choice of lottery, where qi is the probability of effort choice a⃗i. Similarly, let w⃗ = {wi}3i=1 denote the
corresponding choice of promised utility. The value functions Gj(w), j ∈ {u, e} solve

Gj(w) = min
q⃗,w⃗

3∑
i=1

qiG
i
j(wi) (32)

s.t. w =
3∑

i=1

qiwi (33)

3∑
i=1

qi = 1 (34)

With this randomization over a⃗, the problem is convex, as the following states formally.

Proposition 2 The value functions Gi
j(w), i = {1, 2, 3}, j = {u, e} and Gj(w), j = {u, e} are convex.

For lower levels of promised utility, a⃗2 dominates, and as w increases, eventually a⃗1 dominates, with
lotteries optimal for values in between. For even larger values of w, eventually inducing effort from an
agent reporting θh also becomes prohibitively costly, and a⃗3 dominates, again with lotteries possible for
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intermediate values of w. Intuitively, exerting effort remains costly, as it requires the planner to spread
utilities (current or future promises) across employment states. Given a convex cost function, these spreads
are costly, and become more costly for higher levels of w; therefore, as w increases, eventually the planner
finds it too costly to induce effort from an agent reporting θl, and eventually for all reports.

In the analysis of the optimal contract, I assume the lower bound is not prohibitively high, which is
summarized in the following assumption:

Assumption 1 For some w, the optimal contract contains an interior solution for wk
j (u), k = {h, l}, j =

{e, u}.

Proof of Proposition 2. First, if Gj(w), j = {u, e} is convex, then standard results in dynamic pro-
gramming establish each Gi

j(w) is convex. Now assume that Gi
j(w), j = {u, e} is convex, and consider

wλ = λw + (1 − λ)w′, λ ∈ (0, 1), w,w′ ∈ W (where W is the set of feasible future promised utilities).
Further, let q⃗, w⃗ be optimal solutions for w, and q⃗′, w⃗′ for w′. Now, consider the following choices for q⃗λ and
w⃗λ:

qλi = λqi + (1− λ)q′i

wλ
i =

λqiwi + (1− λ)q′iw
′
i

qλi

Notice, these represent feasible solutions for the problem in (32)-(34). Since
∑3

i qi=1 = 1 and
∑3

i q
′
i=1 = 1

by assumption, then

3∑
i=1

qλi = λ

3∑
i=1

qi + (1− λ)

3∑
i=1

q′i = 1

Further, the promised utility delivered by this allocation is

w̃ =

3∑
i=1

qλi w
λ
i =

3∑
i=1

λqiwi +

3∑
i=1

q′iw
′
i = λw + (1− λ)w′ = wλ

The convexity of Gi
j(w), i = {1, 2, 3}, j = {u, e} implies that for any η and (w,w′) ∈ W ,

Gi
j(ηw + (1− η)w′) ≤ ηGi

j(w) + (1− η)Gi
j(w

′). (35)

Let η = λqi
qλi

and given the choice of qλi we can write 1− η =
(1−λ)q′i

qλi
. Then, equation (35) implies

Gi
j(w

λ
i ) ≤

λqiG
i
j(wi) + (1− λ)q′iG

i
j(w

′
i)

qλi
(36)

To complete the proof, the definition of Gj(w) along with equation (36) imply

Gj(w
λ) ≤

3∑
i=1

qλi G
i
j(w

λ
i ) ≤ λ

3∑
i=1

qiG
i
j(wi) + (1− λ)

3∑
i=1

q′iG
i
j(w

′
i) = λGj(w) + (1− λ)Gj(w

′)

Therefore, by definition, Gj(w), j = {u, e} is convex. �
Next, I restate the main Proposition from the text:

Proposition 1 There exists a δ > 0 such that an agent starting an unemployment spell with promised
lifetime utility w0 ∈ [w,w + δ), receives increasing consumption over the length of the unemployment spell
with positive probability.
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To prove Proposition 1, several preliminary results are necessary.

Lemma 1 If there exists interior wh
j (i) (i.e. wh

j (i) > w) for some w, then for any optimal vhj (i) and

wh
j (i) ≥ w,

C ′(vhj (i))

θh
≥ G′

i(w
h
j (i))

for i = u, e and j = u, e.

Proof. The proof begins by showing that for interior wh
j (i),

C ′(vhj (i))

θh
> G′

i(w
h
j (i)). Towards this end,

suppose instead
C ′(vhj (i))

θh
≤ G′

i(w
h
j (i)), where vhj (i), w

h
j (i) are optimal solutions, and wh

j (i) > w. Then,

consider decreasing wh
j (i) by ε and increasing vhj (i) by

βε
θh
. This change is possible since by assumption wh

j (u)

is interior. Notice, this leaves V (θh, θh, a
h) unchanged; therefore the constraints in (27)-(29) are unaffected.

Further, since θh > θl, the constraints in (30)-(31) are still satisfied under this alternative allocation. The
R.H.S. of each decreases more than they increase. The alternative allocation, however, decreases costs by

µβ(1− πj)G
′
i(w

h
j (i))ε, and increases them by

µβ(1−πj)C
′(vh

j (i))ε

θh
. Since

C′(vh
j (i))

θh
≤ G′

i(w
h
j (i)) by assumption,

this makes the planner no worse off, a contradiction to vhj (i), w
h
j (i) as optimal solutions. Then, the continuity

of the policy functions, combined with the continuity of C(v) and G′
i(w), establishes

C ′(vhj (i))

θh
≥ G′

i(w
h
j (i)).

�

Lemma 2 If there exists interior wl
j(i) (i.e. wl

j(i) > w) for some w, then for any optimal vlj(i) and

wl
j(i) ≥ w,

C ′(vlj(i))

θl
≤ G′

i(w
l
j(i))

for i = u, e and j = u, e.

Proof. Similarly to the proof of Lemma 1, I begin by establishing
C ′(vlj(i))

θl
< G′

i(w
l
j(i)) for w

l
j(i) > w.

Suppose instead
C′(vl

j(i))

θl
≥ G′

i(w
l
j(i)), where vlj(i), w

l
j(i) are optimal solutions. Then, consider increasing

wl
j(i) by ε and decreasing vlj(i) by

βε
θl
. Notice, this leaves V (θl, θl, a

l) unchanged; therefore the constraints in

(27), (30) and (31) are unaffected. Further, since θh > θl, the constraints in (28)-(29) are still satisfied under
this alternative allocation. The R.H.S. of each decreases more than they increase. The alternative allocation,

however, increases costs by (1− µ)β(1− πj)G
′
i(w

l
j(i))ε, and decreases them by

(1−µ)β(1−πj)C
′(vl

j(i))ε

θl
. Since

C′(vl
j(i))

θl
≥ G′

i(w
l
j(i)) by assumption, this makes the planner no worse off, a contradiction to vlj(i), w

l
j(i) as

optimal solutions. Then, the continuity of the policy functions, combined with the continuity of C(v) and

G′
i(w), establishes

C ′(vlj(i))

θl
≤ G′

i(w
l
j(i)). �

Lemma 3 For the case of a⃗2 = (1, 1), the optimal contract satisfies vkj (e) > vkj (u), for k = h, l and j = e, u.

Proof. The proof proceeds for k = h, as k = l follows analogously. Suppose instead vhj (u) ≥ vhj (e). Then,

consider decreasing vhj (u) by ϵ, and increasing vhj (e) by
1−πj

πj
ϵ. Notice, this change will leave the constraints
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in (27)-(31) intact. Moreover, it will decrease the R.H.S. of (26) by µ(1− πj)C
′(vhj (u))ϵ, and increase it by

µ(1− πj)C
′(vhj (e))ϵ. Since vhj (u) ≥ vhj (e), and C(·) is strictly convex, C ′(vhj (u)) ≥ C ′(vhj (e)); therefore, this

change will not increase the R.H.S. of (26), a contradiction. �
In general, this result holds in any effort allocation where it remains relevant. For the aforementioned

case, both reports exert effort and consequently there exist allocations for both when reporting employment
and unemployment. For the effort allocation a⃗1 = (1, 0), the result only applies to an agent reporting θh,
since a report of θl cannot be accompanied by a report of employment.

Lemma 4 For the case of a⃗2 = (1, 1), the constraint in (31) must bind.

Proof. For this choice of effort by the planner, two of the incentive constraints are

V (θh, θh, 1) ≥ V (θh, θl, 0) (37)

V (θl, θl, 1) ≥ V (θl, θl, 0) (38)

The first constraint is incentive compatibility for an agent reporting θh, who may report θl and shirk on
effort. The proof begins by noticing that both (37) and (38) cannot simultaneously remain slack. To see this,
suppose instead both remain slack. Then, consider decreasing vlj(e) by ϵ, and increasing vlj(u) by

πj

1−πj
ϵ.

Since (37) and (38) remain slack, for ϵ small enough, this still satisfies (27)-(31). Now, costs decrease by
(1 − µ)πjC

′(vlj(e))ϵ, and they increase by (1 − µ)πjC
′(vlj(u))ϵ. From Lemma 3 and the strict convexity of

C(·), this change makes the planner strictly better off, a contradiction. Thus, either (37) or (38) must bind.
Again using Lemma 3 and θh > θl, the following must be true.

θh
[
vlj(e)− vlj(u)

]
+ β

[
wl

j(e)− wl
j(u)

]
> θl

[
vlj(e)− vlj(u)

]
+ β

[
wl

j(e)− wl
j(u)

]
≥ ν

πj
(39)

Now, suppose (37) binds. Then, using (28) for ã = 1 and (37),

θh
[
vlj(e)− vlj(u)

]
+ β

[
wl

j(e)− wl
j(u)

]
≤ ν

πj

However, this contradicts (39). Thus, (37) remains slack, and from the discussion above, (38) (i.e. (31))
must bind. �

Lemma 5 The optimal contract satisfies wl
j(u) > wh

j (u).

Proof. Suppose instead that wh
j (u) ≥ wl

j(u). Given the convexity of Gu(w), Lemmas 1 and 2 imply

that
C ′(vhj (u))

θh
≥

C ′(vlj(u))

θl
, which given the convexity of C(v) and θh > θl gives vhj (u) > vlj(u). Thus,

V (θl, θh, 0) > V (θl, θl, 0); i.e. an agent receiving the shock θl and not exerting effort is always better off
reporting θh. For the cases of a⃗1 and a⃗3, this clearly violates incentive compatibility since the θl report is not
asked to exert effort by the planner. In the case of a⃗2, where the θl report does exert effort, Lemma 4 and
incentive compatibility constraints imply V (θl, θl, 0) = V (θl, θl, 1) ≥ V (θl, θh, 0), a contradiction. Therefore,
it must be the case that wl

j(u) > wh
j (u). �

The intuition for Lemma 5 is straightforward. Given θh > θl, the planner allocates vhj (u) > vlj(u). In

order to maintain incentives for an agent receiving θl to truthfully report, it must be that wl
j(u) > wh

j (u).

Lemma 6 There exists a γ > 0 such that for all w ∈ [w,w + γ], wl
j(u)(w) > w.

Proof. From Lemma 5, wl
j(u)(w) > wh

j (u)(w). Since these policy functions are continuous, a standard

ε− γ argument produces a γ > 0 such that for all w ∈ [w,w + γ], wl
j(u)(w) > w. �
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Lemma 7 The policy function vlu(u)(w) is strictly increasing in w.

Proof. Define the following:

V(θl, θl, alu) ≡ V (θl, θl, a
l
u)− θlv

l
u(u,w)

Using (27) to solve for vlu(u) gives

vlu(u,w) =
w − µV (θh, θh, a

h
u)− (1− µ)V(θl, θl, alu)
(1− µ)θl

(40)

Plugging this expression into (26) for j = u, and differentiating with respect to w gives

(
Gi

u

)′
(w) =

(1− πu(a
l
u))

θl
C ′(vlu(u,w)) (41)

From the strict convexity of Gi
j(·), i ∈ {1, 2, 3} and C(·), as w increases, vlu(u)(w) must also increase. �.

Now consider the proof of Proposition 1. In the following proof, I focus on a particular allocation for effort;
i.e. any given a⃗i. Since Lemmas 5 and 6 apply to all allocations of effort (i = 1, 2, 3), it is straightforward to
apply the proof to the case where the planner randomizes between different effort allocations, as any convex
combination of vlj(u, i) and wl

j(u, i) still satisfies Lemmas 5 and 6.
Proof of Proposition 1. From Lemma 6, there exists a γ > 0 such that for all w ∈ [w,w + γ],

wl
u(u)(w) > w. Set δ = γ. Now consider an agent unemployed for n > 1 periods, and starting the

unemployment spell with w = w0, where w0 ∈ [w,w + δ). Furthermore, consider an agent who receives a
sequence of n θl shocks, (θl, θl, ..., θl). In period 1 of the unemployment spell, the agent receives consumption
c1 = C(vlu(u)(w0)). Next period, he enters with promised lifetime utility wl

u(u)(w0). Since w0 ∈ [w,w + γ),
from Lemma 6, wl

u(u)(w0) > w0. From Lemma 7 and since C(·) is strictly increasing, consumption in
period 2, c2 = C(vlu(u)(w

l
u(u)(w0))) > c1. This continues until either (i)the unemployment spell ends, or

(ii)eventually wl
u(u)(w) = w, at which point consumption remains constant. Thus, consumption increases

over the duration of unemployment when the agent receives the history (θl, θl, ...θl). This history occurs with
probability (1− µ)n > 0; therefore, consumption increases over the duration of unemployment with positive
probability. �

A.1 Calibration of
θh
θl

The smallest ratio of
θh
θl

that permits the unemployment to non-participation transition can be solved

for directly. From (12) and (13) (in the main text), an agent, in the first period of unemployment (j = u)
receiving the θh shock, remains indifferent between exerting effort or not when

θhπu[v(y)− v(b)] + βπu

{
µ[V US

e (θh)− V US
nb (θh)] + (1− µ)[V US

e (θl)− V US
nb (θl)]

}
= ν (42)

Similarly, the agent in state j = nb, receiving the shock θl, remains indifferent between exerting effort and
not when

θlπu[v(y)− v(d)] + βπu

{
µ[V US

e (θh)− V US
nb (θh)] + (1− µ)[V US

e (θl)− V US
nb (θl)]

}
= ν (43)
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Combining (42) and (43) implies

θh
θl

=
[v(y − τb)− v(d)]

[v(y − τb)− v(b)]
(44)

Given the values for θh and θl, I chose ν to satisfy (42).

A.2 Näıve Allocation

The cost of providing the näıve allocation, to an agent in employment state j last period, denoted by
G̃j(w), solves the following program:

G̃j(w) = min
{
πj [C(ṽj(e))− y] + (1− πj)C(ṽj(u)) + β

[
πjG̃e(w̃j(e)) + (1− πj)G̃u(w̃j(u))

]}
(45)

s.t. w = πjE(θ) [ṽj(e) + (1− πj)ṽj(u)]− ν + β [πjw̃j(e) + (1− πj)w̃j(u)] (46)

πjE(θ) [ṽj(e) + (1− πj)ṽj(u)]− ν + β [πjw̃j(e) + (1− πj)w̃j(u)] ≥ E(θ)ṽj(u) + βw̃j(u) (47)

Equation (46) represents the promise keeping constraint, while (47) is the incentive compatibility con-
straint. Notice, the planner does not recognize agents receive a taste shock θ ∈ {θl, θh}, but instead believes
preferences are based on E(θ). The latter fact ensures the allocation satisfies promise keeping, so agents
prefer to participate.

B Alternative Specification of Preferences

This section describes in more detail the alternative specification of the model, and describes the analogous
analytical results to those in Section 4.1. Preferences are now given by,

E0

∞∑
t=0

βt[v(ct)− θtν(at)]

so the preference shock affects the utility cost of effort directly. Under this alternative specification, the
timing of the model may be simplified, so that effort only affects next period’s employment state, instead
of the lottery occurring before consumption is allocated. In addition, I assume that when exerting effort
the probability of finding/retaining a job is πj , and if not exerting effort there exists positive probability
of finding/retaining a job, π, where πj > π. This assumption does not affect the results, but makes the
analytical results more transparent. In the quantitative analysis of this version I set π very close to zero.

An agent enters each period with his employment status from last period, j, and his expected lifetime
utility promise, w, known. The contract specifies utility for the current period (depending on the θ reported),
and the agent’s future lifetime utility promise, depending on the reported θ and whether the agent finds
employment during the period or not. Thus, the planner offers the following contract to an agent entering
the period in employment state j:

τj =
{
akj , v

k
j , w

k
j (u), w

k
j (e),

}
, k = h, l

Notice, the agent only receives consumption (vhj ) depending on the report of θ, while the future promised
utilities depend on both the report and next period’s employment status. In the version presented in Section
3, both consumption and future utilities depend on the employment draw.
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Similarly to before, denote the expected lifetime utility from the contract τj , for an agent receiving the
shock θi, reporting the shock θk, and exerting effort a, by Vj(θi, θk, a). This is given by,

Vj(θi, θk, 1) = vkj − θiν + β
[
πjw

k
j (e) + (1− πj)w

k
j (u)

]
(48)

Vj(θi, θk, 0) = vkj + β
[
πwk

j (e) + (1− π)wk
j (u)

]
(49)

This agent exerts effort if Vj(θi, θk, 1) ≥ Vj(θi, θk, 0), which occurs when,

β(πj − π)
[
wk

j (e)− wk
j (u)

]
≥ θiν (50)

B.1 Planning Problem

The planner’s problem is similar to that presented in Section 4, with only the timing and the agent’s
utility calculation changing. The analogous problem is given by (where χ represents an indicator variable
equal to 1 if the agent is employed):

Gi
j(w) = min

τ i
j

µ
{
C(vhj )− χy + β

[
πh,i
j Ge(w

h
j (e)) + [1− πh,i

j ]Gu(w
h
j (u))

]}
+(1− µ)

{
C(vlj)− χy + β

[
πl,i
j Ge(w

l
j(e)) + [1− πl,i

j ]Gu(w
l
j(u))

]}
(51)

s.t. w = µVj(θh, θh, a
h
i ) + (1− µ)Vj(θl, θl, a

l
i) (52)

Vj(θh, θh, a
h
i ) ≥ Vj(θh, θl, ã), ∀ã ∈ Ai

l (53)

Vj(θh, θh, a
h
i ) ≥ Vj(θh, θh, ã), ∀ã ∈ Ai

h (54)

Vj(θl, θl, a
l
i) ≥ Vj(θl, θh, ã), ∀ã ∈ Ai

h (55)

Vj(θl, θl, a
l
i) ≥ Vj(θl, θl, ã), ∀ã ∈ Ai

l (56)

This is the problem for a given effort allocation. Recall, a⃗i = (ali, a
h
i ), where a⃗1 = (0, 1), a⃗2 = (1, 1),

a⃗3 = (0, 0), and a⃗4 = (1, 0). Moreover, unlike the baseline specification, the sets Ai
k are all the same. That

is, an agent now always has the choice of exerting effort, since when not exerting effort there exists some
probability of finding a job. The full problem also involves a choice of lotteries over the different effort
allocations. As in the main body of the paper, I let q⃗ = {qi}3i=1 denote the choice of lottery, where qi
represents the probability of effort choice a⃗i. Note that while the notation is identical to the baseline case
presented in the main text, which allocations of effort are relevant is different under this specification of
preferences. Now a⃗1 = (0, 1) is irrelevant, as the planner never prefers to have the θh report exert effort
(“bad” shock in this case) while the θl report does not.

B.2 Properties of the Optimal Contract

The primary goal of this section is to show that the increasing consumption result from Proposition 1 still
obtains in this environment. Under this specification of preferences, fewer analytical results are available,
but I can provide some characterization of the optimal contract. First, I only consider the case when the
planner asks for effort from the agent reporting θl, but not from θh; i.e. a⃗4 = (1, 0). The case where both
agents are required to exert effort is both more difficult to characterize, and potentially less interesting,
which I explain below. Also note, for the remainder of this appendix, for notational convenience, I often
suppress the subscript for current employment status j, although it is implied everywhere.

The key to the main theoretical result in Proposition 1 is to show that for an interval around the lower
bound, w increases under the optimal allocation. Towards this end, consider the following results.
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Lemma 8 The following relationships hold in the optimal contract: (i) G′
e(w

l(e)) ≥ G′
u(w

l(u)); (ii) C ′(vl) ≥
G′

u(w
l(u)); (iii) for interior wh(e), G′

u(w
h(u)) > G′

e(w
h(e)); and (iv) G′

u(w
h(u)) > C ′(vh).

Proof. To prove (i), first note that since θlν > 0, satisfying (56) requires wl(e) > wl(u); therefore, wl(e) is
always interior. Next, I first consider the case where wl(u) is also interior. Suppose instead that G′

u(w
l(u)) ≥

G′
e(w

l(e)). Then decrease wl(u) by ε and increase wl(e) by
1− π

π
ε. This maintains incentive compatibility,

and given the assumption that G′
u(w

l(u)) ≥ G′
e(w

l(e)), this change makes the planner better off. Therefore,
for interior wl(u), G′

e(w
l(e)) > G′

u(w
l(u)). The result in (i) follows from the continuity of G′

j(w). (ii) is

proved in a similar fashion. Begin with interior wl(u), and assume instead that G′
u(w

l(u)) ≥ C ′(vl). Then

increase vl by ε and decrease wl(u) by
ε

β(1− π)
. This maintains incentives and makes the planner better

off. Continuity gives (ii).
To show (iii), suppose instead G′(wh(u)) ≤ G′(wh(e)). Then, decrease wh(e) by ε and increase wh(u) by
π

(1− π)
ε. This maintains incentives and makes the planner better off, a contradiction. Finally, to show (iv),

suppose instead that C ′(v) ≥ G′
u(w

h(u)). Then, decrease vh by ε and increase wh(u) by
ε

β(1− π)
. This

maintains incentives while making the planner better off, a contradiction. �
The key to the increasing consumption result is to show an interior wk(u) always obtains (in this case it

occurs for the θh report). The following Lemma shows this key step for a particular effort allocation.

Lemma 9 For the case of a⃗4 = (1, 0), wh
u(u) > wl

u(u).

Proof. Suppose instead that wl(u) ≥ wh(u). From Lemma 8:

C ′(vl) ≥ G′
u(w

l(u)) ≥ G′
u(w

h(u)) > C ′(vh) (57)

which implies vl > vh. Since wl(u) ≥ wh(u) by assumption, to maintain incentives (prevent θh report from
lying), it must be that wh(e) > wl(e). This implies wh(e) is interior, so that (iii) of Lemma 8 holds, which
gives:

G′
e(w

l(e)) ≥ G′
u(w

l(u)) ≥ G′
u(w

h(u)) > G′
e(w

h(e)) (58)

However, this implies wl(e) > wh(e), a contradiction. Therefore, wh
u(u) > wl

u(u). �

Lemma 9 applies to the case where the planner prefers to have an agent reporting θl exert effort, but
requests no effort from an agent reporting θh. Intuitively, given the effort allocation, the planner must ask
the agent for their preference shock; in order to provide incentives for the agent to truthfully reveal their
shock, the planner provides some spreads in their respective allocations. The implication of this result is the
analogous result to Proposition 1. Before presenting that result, the following Lemma is used in the proof:

Lemma 10 At the optimal solution, vh(w) is increasing in w.

Proof. The proof follows the proof of Lemma 7 and the details are omitted here. �

Proposition 3 For the case of a⃗4 = (1, 0), there exists a δ > 0 such that an agent starting an unemployment
spell with promised lifetime utility w0 ∈ [w,w + δ), receives increasing consumption over the length of the
unemployment spell with positive probability.

Proof. The proof follows closely the proof of Proposition 1 and thus the details are omitted here. Again,
the key fact is that wh(u) > wl(u) ≥ w; therefore, using the continuity of the policy functions, there exists
an interval around w where w is increasing for the agent reporting θh. Since w is increasing, from Lemma
10, vh and thus consumption are also increasing for an agent remaining unemployed and receiving a string
of consecutive θh shocks, which occurs with positive probability. �
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B.3 Technical Issues

In the case where both agents exert effort, it remains more difficult to fully characterize the allocations.
Intuitively, since the planner prefers the same effort allocation for both reports, there may not exist any
reason for her to offer different allocations to each report; i.e. a “pooling” contract may be optimal. While
in many incentive problems a pooling equilibrium represents an interesting feature worth exploring, here
it remains less interesting. Essentially, the planner’s choices are restricted along the dimension (effort) she
most prefers to have flexibility. If the number of effort choices is sufficiently large, the planner always prefers
a different choice of effort for each report, and thus separates allocations in a similar manner to Lemma 9.
For example, a “pooling” contract is never optimal if effort is a continuous variable.

Few analytical results are possible when the planner allocates effort to both reports. Moreover, the
larger issue is the nature of the economy in this case. The shocks affect the utility cost of effort directly,
but with only two choices of effort, the planner has limited options for minimizing costs while providing
incentives. This represents the reason that I use the version where the shock affects the marginal utility
from consumption directly as the baseline case.

Although more appealing analytically, as mentioned in the main body of the paper, the baseline specifi-
cation of preferences may affect the magnitude of the welfare gains, since even the first best allocation varies
consumption by reported θ. To gauge how relevant this is for the welfare gains presented, I now calibrate
the alternative specification of preferences and compute the analogous welfare gains.

B.4 Quantitative Analysis

This section describes the calibration of the alternative model, and then offers a comparison of the
welfare gains from this model and the baseline specification. This comparison is made as follows. First, I
focus only on the partial equilibrium case; i.e. I abstract from the general equilibrium version of the planning
problem. The general equilibrium version is very useful for endogenizing the lower bound and linking the
theoretical and quantitative results. The focus here, however, is simply on the size of the welfare gains in
each specification. What matters is the allocations of consumption and effort across the taste shocks, not
the distributional issues involved in the general equilibrium version. Given these factors, and the additional
computational cost of computing the general equilibrium version, I only present the partial equilibrium case
here.

To calculate the welfare gains, in each specification I find the level of expected lifetime utility in the
optimal contract, denoted wP , such that Ge(wP ) = 0. The corresponding value for the näıve planner’s
allocation is denoted wN . I then compare wP (wN ) with wUS , the level of expected lifetime utility delivered
to an employed agent under the current U.S. system, which remains self-financing.

B.4.1 Calibration

I first describe the calibration of the alternative specification of preferences. The model is similar except
in the timing; agents consume before the employment shock is realized. As a result, in this alternative
specification, there is an additional non-employed state relative to the baseline specification (an additional
period of benefit eligibility).

Given the U.S. system previously described, we can define an agents expected lifetime utility, depending
on her current employment state. First, if employed, having received the shock θ, expected lifetime utility
is given by:

V US
e (θ) = v(y − T )− θν + β

[
πeEθ′V US

e (θ′) + (1− πe)Eθ′V US
1 (θ′)

]
(59)

Then, for an agent in the first period of non-employment, they are eligible for and collect benefits. Their
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value functions are given by (depending on search effort):

V US
1 (θ, a = 1) = v(b)− θν + β

[
πuEθ′V US

e (θ′) + (1− πu)Eθ′V US
2 (θ′)

]
(60)

V US
1 (θ, a = 0) = v(b) + β

[
πEθ′V US

e (θ′) + (1− π)Eθ′V US
2 (θ′)

]
(61)

In the second period of non-employment, the agent remains eligible for benefits, but exhausts them if still
non-employed moving forward. Thus, expected lifetime utility is given by:

V US
2 (θ, a = 1) = v(b)− θν + β

[
πuEθ′V US

e (θ′) + (1− πu)Eθ′V US
3 (θ′)

]
(62)

V US
2 (θ, a = 0) = v(b) + β

[
πEθ′V US

e (θ′) + (1− π)Eθ′V US
3 (θ′)

]
(63)

Finally, if non-employed for longer than two periods, benefits have expired and expected lifetime utility
follows:

V US
3 (θ, a = 1) = v(d)− θν + β

[
πuEθ′V US

e (θ′) + (1− πu)Eθ′V US
3 (θ′)

]
(64)

V US
3 (θ, a = 0) = v(d) + β

[
πEθ′V US

e (θ′) + (1− π)Eθ′V US
3 (θ′)

]
(65)

where T denotes the lump-sum tax that finances the unemployment benefits, and Eθ′ is the expectation over
values of θ next period.

The calibration follows the baseline case in Section 5.3. The parameters µ, ν, and
θh
θl

are chosen to ensure

that a non-employed agent receiving the shock θl always prefers to be unemployed (i.e. exert search effort),
while an agent receiving the shocks θh prefers to enter non-participation (i.e. not exert search effort). As

in the baseline calibration, I find the lowest ratio of
θh
θl

that delivers this feature. This implies that in the

first period of non-employment exerting effort is preferred for an agent with θl, and in the third period
of non-employment an agent with θh prefers not to exert effort. From the value function in (59)-(65) this
implies the following two conditions (using the fact that µθh + (1− µ)θl = 1):

ν = µβ(πu − π)
[
Eθ

(
V US
e − V US

3

)]
+ (1− µ)β(πu − π)

[
Eθ

(
V US
e − V US

2

)]
(66)

θh =
1

µ

[
1−

(1− µ)β(πu − π)
[
Eθ

(
V US
e − V US

2

)]
ν

]
(67)

Given the other parameters, these two equations imply
θh
θl

= 1.32. In the computations, I use a higher value,

θh
θl

= 3.58 to ensure that the planner indeed prefers to have only the θl report searching (the case I have

analyzed analytically), and for comparability with the baseline analysis.
Finally, in this model, there is an additional parameter, π, the probability of transitioning to employment

if not exerting search effort. I set this to a low value, π = 0.001 to allow comparisons with the baseline
case where π = 0. The parameters for this alternative specification and for the baseline comparison case are
given in Table B.1

I also must specify the parameters of the U.S. system. In this comparison, I set the unemployment
benefit, b = 0.66y and d = 0.25y, which correspond to the values for the baseline case in the main text.

B.4.2 Welfare Comparisons

This section compares the welfare gains from adopting the optimal contract, relative to the current
U.S. system described above, and the näıve planner’s allocation. To calculate the welfare gains, in each
specification I find the level of expected lifetime utility in the optimal contract, denoted wP , such that
Ge(wP ) = 0 (wN for the näıve planner). I then compare wP (wN ) with wUS .

Table B.2 presents the comparison of welfare gains. The second column shows that in both cases the
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Table B.1: Parameters

Parameter Baseline Alternative
ν 0.98 0.96
µ 0.9790 0.021
θh
θl

3.49 3.58

w 34% 35%

Notes: The first column lists the parameter, and the second and third columns display the value for the Baseline case and the
Alternative, respectively. Further note that the value for µ is the same, but in the alternative specification the θh shock does not
exert effort, while in the baseline case, the θl shock does not. In both cases, the value of µ is set to match the unemployment
to non-participation transition probability. As in the main text, the value of the lower bound is a per-period consumption
equivalent, as a fraction of the per-period wage: exp[(1− β)w]/y.

Table B.2: Welfare gains (in %), relative to current U.S. system

Specification Total Gain Näıve Extra Gain
Baseline 1.94 1.06 0.87
Alternative 1.59 0.55 1.04

Notes: All welfare gains are in consumption equivalent terms. “Baseline” refers to the preference specification from the main
text, while “Alternative” is the case presented in this section. “Total Gain” refers to the gains achieved by the optimal contract,
relative to the U.S. system, while “Näıve” represents the gains from the näıve allocation, relative to the U.S. system. The last
column, “Extra Gain” displays the additional gain from incorporating adverse selection.

optimal contract provides considerable gains over the current U.S. system, approximately 3% in consumption
equivalent terms. The third column shows that the näıve allocation also provides large welfare gains, and
the last column shows the additional gains from considering both adverse selection and moral hazard. The
main conclusion from Table B.2 is that moving the taste shock to the utility cost of effort does not affect
the size of the additional gains. In fact, the additional gains are actually larger in the case of the alternative

preferences (with a smaller ratio of
θh
θl

).

In the cases considered here, it is optimal for the planner to recommend no effort from the agent reporting
the relatively higher utility cost of effort.

B.4.3 Hopenhayn and Nicolini Version

In the optimal contract (either specification), some of the additional welfare gains arise because the
planner achieves a more efficient allocation across taste shocks for employed agents. One may argue that
such gains apply to a more general social insurance scheme, not unemployment insurance specifically. To
analyze this dimension, in this section I consider a similar planning problem to the one in Hopenhayn and
Nicolini (1997).

Specifically, I assume that once employed, agents no longer receive taste shocks, and they no longer face
a decision to exert job-retention effort or not. They incur a utility cost to working, ν, but they do not have
a choice to exert the effort or not. With exogenous probability 1 − πe, they lose the job and transition
to non-employment. The non-employment states are identical to the original model. The planner controls
consumption of the non-employed as before. If the agent transitions to employment, the planner still sets
wk

j (e); i.e., the planner determines the “employment tax.” Once employed, however, the planner does not
control w; it remains constant. This is an identical planning problem to Hopenhayn and Nicolini (1997)
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(except that here employment is stochastic, not permanent).

Table B.3: Welfare gains (in %): Hopenhayn and Nicolini Version

Specification Total Gain Näıve Extra Gain
Baseline 2.45 0.52 1.92
Alternative 1.35 0.55 0.79

Notes: All welfare gains are in consumption equivalent terms. The first row presents the “Hopenhayn and Nicolini” case for
the baseline specification of preferences, where the taste shock hits the marginal utility of consumption, and the second row
presents the same case but for the alternative specification of preferences, where the taste shock hits the utility cost of effort
directly.

Table B.3 presents the welfare gains for this case, for both the baseline specification of preferences, and
the alternative. Surprisingly, in the baseline case, the welfare gains increase significantly in this version.
This arises, I believe, because the costs of an employed agent decreases significantly. This occurs because the
information problems disappear. For employed agents, the planner no longer has to deal with the information
problems with respect to the taste shock nor with respect to job-retention effort. She simply offers constant
consumption while employed. While indeed the planner loses the gains from smoothing consumption across
taste shocks for the employed, these are trumped by the gains from perfect information (among employed
agents). In the case of the alternative specification of preferences, the additional welfare gains from the
optimal contract decrease slightly in the Hopenhayn and Nicolini case.

The experiments presented in this appendix suggest that the main results presented are robust to several
different specifications of preferences and planning problems. Note, Table 6 in Section 6.4 of the main text
summarizes the results from these experiments (both Table B.2 and Table B.3).
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